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Abstract—With the rise of web-based social networking, a great
many short texts/micro-messages are exchanged daily. Although
short texts/micro-messages are a powerful and efficient way to
communicate among individuals, their anonymity and short-
length attributes give rise to a real challenge for Author Identifi-
cation studies. In this paper, we tackle the Author Identification of
short texts problem via Convolutional Neural Networks (CNNs).
Specifically, we present a novel Multi-Channel CNN architecture
that processes different features of text via word, character, and
parts of speech (POS) embeddings. We examine the usefulness
of different feature types and show that the combination of em-
beddings can capture different stylometric features. In addition,
we add an identity mapping block in the convolutional layer
to preserve the maximum amount of information from features.
Extensive experiments with a variety number of authors and
writing samples per author were conducted using our proposed
architecture. Based on the experiments, our proposed method
outperforms the state-of-the-art system on a large Twitter dataset.

Index Terms—Convolutional Neural Networks, Authorship
Attribution, Author Identification, Identity Mapping

I. INTRODUCTION

Author Identification [1], also referred to as Authorship
Attribution, is the task of capturing the stylistic information in
a collection of writing samples and identifying the authors of
unknown texts based on the captured information [2]. Author
Identification research has developed substantially over the last
decade with a focus on long texts [3], [4]. Recently, there is
a growing interest in identifying authors of micro-messages
due to the development of social media platforms and the
emergence of social media as the primary mode of communi-
cation [3]. The increase in micro-message traffic has attracted
attention in many fields such as email author identification
[5], blog author identification [6], and web message author
identification [7].

The task of identifying authors of micro-messages has been
shown to be more difficult than Author Identification using
long texts [8]. Social media platforms, such as Twitter [9],
limit the number of characters for each tweet (micro-message).
Furthermore, many tweets are not as formal as book chapters
or documents, may lack the syntax of natural languages and
contexts and may contain a large number of typos and syntax

errors. In this paper, we attempt to tackle these problems via
a novel Multi-Channel CNN architecture.

The stylometric properties of a text can be captured by
different feature sets [3]. Therefore we combine word embed-
dings, character embeddings, and part of speech embeddings
within one CNN architecture to form a Multi-Channel CNN
architecture, namely AARef. These embeddings can be consid-
ered as individual information channels for a CNN. We also
added a novel multi branch convolution block with identity
mapping in the convolutional layer. The identity mapping links
the layers in the network and provides an alternative path to
preserve the gradient. This skip connection ensures that the
initial information can be captured and passed to the next layer.
Our preliminary results of AARef using shared convolutional
filters and skip connections for all embeddings outperforms
the state-of-the-art methods [10]. We compare AARef with
the best performing state-of-art methods within the literature
[10] as well as several popular authorship attribution methods
for micro-messages [4], [9].

We have designed a number of experiments with a varying
number of authors (from 100 to 1,000) as well as a varying
number of writing samples (from 50 to 500) per author. Each
tweet was treated as one writing sample in the experiments. We
show that one tweet can be successfully identified using our
proposed Multi-Channel CNN architecture. Comparing with
the state-of-art baselines, our model achieved a minimum of
3.81% improvement in classification accuracy on the Twitter
dataset.

The remainder of this paper is organized as follows. Section
II presents some work related to this study, Section III intro-
duces our Multi-Channel CNN architecture for Author Iden-
tification in detail. Section IV and V present our experiments
and results respectively. In Section VI, we summarize our work
and briefly discuss the potential future research venues.

II. RELATED WORK

In this section, we present earlier work related to our
research.



A. Author Identification

In the literature [2], authors of the text samples are identified
using a variety of methods. Memory-based learning was used
by Luyckx et al. [11] to analyze the relationship between
the number of authors, the number of writing samples per
author, and the size of each writing sample. Luyckx et al. [11]
showed that increasing the number of authors within a dataset
has an adverse effect on Author Identification accuracy while
increasing the number of writing samples per author as well
as the size of each writing instance increases the identification
rate.

Similarity-based [12]–[16] and statistical-based [12]–
[16] methods are popular Author Identification techniques.
Similarity-based methods calculate the distance between writ-
ing samples using the concept of relative [16] and cross-
entropy [14]. Statistical-based methods use different sets of
extracted features from writing samples to capture an au-
thor’s writing style. Some of the successful methods include
Support Vector Machines (SVMs) [17], Decision Trees [18],
Random Forest Classifiers, k-Nearest Neighbors, Multilayer
Perceptrons [19], Radial Basis Function Networks, and Naive
Bayesian Classifiers, just name a few. There are compre-
hensive studies that investigated the performance of different
feature sets [3], [12], [20]–[23]. Some of these feature sets
include character and word n-grams [3], [12], [22], bag-of-
words [20], part of speech(POS) [3], stylometry [23], and etc.
A more comprehensive overview of the Author Identification
analysis can be found in [2].

B. Author Identification of Micro-Messages

Schwartz et al. [9] introduced a method known as K-
Signatures to identify authors of micro-messages. The K-
Signatures method captures the style of an author by collecting
the features only found in the writing samples of the author.
Also, another condition for collecting the feature is that a given
feature needs to be seen in k% of the author’s writing samples.
The K-Signature method was used by SVMs to classify an
author of a given text.

Rocha et al. [3] provided an overview of the Authorship
Identification methods used in social media. In addition, they
provided performance analysis of the feature sets of micro-
messages using two classifiers, namely, a Power Mean SVM
(PMSVM) [24] and Random Forests. Rocha et al. [3] sug-
gested that character 4-grams perform best among the features
compared in the work, including word n-grams and Parts of
Speech n-grams.

Shrestha et al. [25] used a different approach for identifying
the authors of micro-messages via CNNs. The authors used a
sequence of character n-grams as input. Similarly, the CNN
architecture proposed by Theóphilo et al. [4] processes each
micro-message as a sequence of character level 4-grams.
While the architecture proposed by Theóphilo et al. [4] was not
the best performer, it required less computational resources.
Aykent et al. [10] proposed an architecture to efficiently use
both word and character level n-grams as input. To the best of

our knowledge, this is the best performing algorithm, to date,
for Author Identification of micro-messages.

C. Neural Networks for Author Identification

CNNs for Author Identification have shown promising
results [3], [10], [25], [26]. Kim [26] proposed a CNN for
sentence classification. The CNN utilized convolutional filter
sizes of 3, 4, and 5, a dropout rate, and max-over-time
pooling (Collobert et al. [27]). Kim’s approach [26] used a
different combination of models such as: a) randomly initial-
ized, b) static model, c) dynamic model, d) Multi-Channel
that combines the static and dynamic models. The models,
excluding the random model, used pre-trained word2vec word
embeddings [28].

Recurrent Neural Networks (RNNs) [29], have also been
used for Author Identification. Bagnall [29] used a RNN
that predicts the next character in the sequence based on the
previously seen characters. Different sets of probabilities of
the next character for each author were generated, then authors
were identified based on these probabilities. This was the best
performing method for the PAN 2015 multi-language author
identification competition.

D. Convolutional Neural Networks

Multi-Channel CNNs [30] have been extensively studied
in some areas such as image classification, object detection,
and speech recognization [31]. The color channels (such as
RGB) in computer vision [30] or the wavelengths channels
in speech recognization [31] have proven successful as Multi-
Channel input for classification problems in their respective
fields. Although natural language inputs are normally in the
form of single-channel tokens or characters, the different sets
of extracted features are shown to capture different stylometric
features [3], [4], [12], [20], [22]. To our knowledge, no work
has been done with respect to the micro-message author
identification task using feature learning and model training
from both word embeddings, character n-grams embeddings,
and POS embeddings. In addition to the proposed novel Multi-
Channel CNN architecture using three different embedding
methods, we also proposed an identity mapping block added
to the convolutional layer to allow for more information
flow within the network. This identity mapping block greatly
improves the performance of our model by preserving the
information from the features [32].

III. METHOD

In this section, we present the details of AARef.

A. Model Construction

In light of the above discussion, we devised AARef architec-
ture utilizing word embeddings, character n-gram embeddings,
and POS embeddings. The Multi-Channel convolutional net-
work architecture is shown in Figure 1, and the model details
are as follows.



Fig. 1. AARef: Multi-Channel CNN architecture diagram. The writing samples are tokenized and fed to embeddings. Word embeddings, character bigram
embeddings and POS embeddings are illustrated in the figure. The embeddings then forwarded to convolutional layers with the different window sizes. After
convolution, max-over-time pooling is used in pooling layer, followed by merge layer, which combines the features by Add(+) operation, then feed into a
fully connected layer with softmax output.

1) Embeddings Layer: There are three embeddings used in
parallel in our proposed network. For the word and character
embeddings, the input text samples are tokenized and fed
into each embedding separately. For the POS embedding, the
input text is first tagged via TweetNLP Tagger [33]. After
writing samples are converted into POS, they are tokenized
and fed into POS embedding. All three embeddings are used
as separate channels as shown in Figure 1. These feature
embeddings are padded when necessary to have a constant
size. Dropout is applied to the embeddings to avoid over-
fitting. After dropout, the embeddings (inputs) are given to the
convolutional layers with different window sizes in parallel.

2) Convolutional Layer: The three embedding channels
are then separately forwarded to convolutional layers with
different window sizes. Figure 2 shows a detailed illustration
of the multi branch convolutional refinement blocks. The
convolutional blocks apply different sized filters to the input,
feature embeddings in our case, and shifts the filter until the
end of the sequence. The window size of the convolution
operation corresponds to the size of the filter that is applied
to the input each time. Regarding the filters, two sets of filters
are used with window sizes 3 and 4 separately.

For the convolutional branch with filter sizes 3 and 4, we
used the Scaled Exponential Linear Unit (SELU) activation
function [34] because of its self normalizing properties. The
convolutional layer can be represented as follows:

f(x) = λ

{
x, if x > 0

αex − α, if x <= 0
(1)

where x is the output of the convolutional filters, and λ and
α are pre-defined constants.

In addition to the convolution with window size 3 and 4, we
add an identity mapping block on the left marked in a light
grey color block. The features were upscaled to 500 first, then
followed by two L × 3 convolution operation with a batch
normalization operation. An identity connection was added to
the two convolution operation as shown in Figure 2 marked by
a grey box. Given the output of the upscale layer, L, denoted as
XL, and the output of the identity block is XL+1, the identity
mapping block is represented by the following equation:

XL+1 = f(XL) +XL (2)

This identity connection ensures that the information from
the previous layer is not altered and can flow unimpeded to
the next layer in the network.

For the convolutional layer identity mapping branch, we
used a Leaky ReLU activation function [35]. The convolutional
layer can be represented as follows:

f(x) =

{
x, if x > 0

0.01x, if x <= 0
(3)



where x is the output of the convolutional filters.
Since we used character embedding, word embedding, and

part of speech embedding as individual input channels, each
channel has an output, feature map, of size 1, 536(= 512×3).

Fig. 2. The detailed illustration of the multi branch convolution blocks.

3) Pooling Layer: Convolutional layers are followed by
max-over-time pooling [27], which takes the feature with
maximum value in a given filter. For the feature matrix
output x by the convolutional layer, the max-over-time pooling
operation can output x̂ as follows:[

x̂
]
i
= max

t

[
x
]
i,t

1 <= i <=M (4)

where t is the position in the sentence, i is the convolutional
filter applied and M is the numbers of filters for each window
sizes as shown in Figure 1.

In this way, we make the network keep the most salient
features produced by convolutional layers. Thus, the number
of selected values with max-over-time pooling is equal to the
number of filters in the architecture per feature embedding.

4) Merge Layer: The resulting features are merged into a
single feature map using add (+) operations in merge layer
as as shown in Figure 1. The add operation use pairwise
add operation between feature vectors. The operation can be
represented as follows:

x1..n = a1..n + b1..n + c1..n (5)

where x1..n is the output of the merge layer. a1..n, b1..n, and
c1..n represent the output of the last layer.

5) Fully Connected Layer with Softmax Output: After the
merge layer, the final step is to feed the feature maps into the
fully connected layer, followed by the softmax function for
the classification. The softmax function, which is shown in
equation 6, take exponents of each element xi from the input

feature map x and normalize them by dividing by the sum of
all the exponentials. The equation is as follows:

S(xi) =
exi∑k
j=1 e

xj

(6)

where k is the total number of inputs. Softmax function scores
the authors based on the closeness of the feature map to the
class of an author. The network guesses the author of the
writing samples with the highest score.

B. Hyper-parameters

Hyper-parameters were selected using grid search [36]. The
dimension of the embeddings used was d = 400. The dropout
was 25%. For the convolutional layer, there were 512 filters
per window size, M = 512, which makes a total of 1,536
filters. Hence, only one feature was selected per filter. We
use a batch size of 64 for the experiment. The epoch limit
was 100 with an early stopping condition. Early stopping was
based on validation accuracy improvement and stops after 20
epochs without an improvement. The learning rate updated
during the training by Adam optimizer. The initial learning
rate was 1e− 4.

IV. EXPERIMENTS

In this section, we present our experiments and datasets in
detail.

The parameters used in the experiments were the number
of authors and the number of writing samples per author. One
of these parameters changed at a time to investigate the affect
of a given parameter on the performance of the system.

We used a preprocessing method similar to [9] in all
datasets. We replaced the numbers, username references, date,
time, and website URLs with pre-defined meta tags. As we
need as much information as we can get from the tweets,
we did not convert the text into lowercase to keep the case
information.

Table I shows the Twitter dataset [10] statistics for subsets of
dataset used in the experiments with 100, 200, 500, and 1,000
authors (a). Similarly, Table II shows the dataset statistics
for subsets of the dataset used in the experiments with 50,
100, 200, and 500 writing samples (w). Tables I and II have
the same structure. The first column shows the number of
authors (a) in Table I and the number of writing samples (w)
in Table II. Then, the mean (µ) and standard deviation (σ)
of the number of characters, words, and sentences for writing
samples are shown. The last column of Tables I and II shows
that the dictionary size (|D|) which is the number of unique
words in the dataset.

In Table I, the average number of characters are within the
range of 72 ± 2 for all authors. The character limit for Twitter
is 140, the average number of characters are close to half the
size of the limit. This trend is also observable in the average
number of words and sentences. Please note that each author
group is sampled without replacement, hence, they are disjoint
sets.



On the other hand, the dictionary size grows when the
number of authors increases which was expected since there
are more writing samples for groups with more authors. The
increase in dictionary size was less than the increase in the
number of authors since it gets harder to find a unique word
when the dictionary is larger.

TABLE I
DATASET STATISTICS: VARYING NUMBER OF AUTHORS

a
Characters Words Sentences

|D|
µ σ µ σ µ σ

100 71.57 33.81 14.10 6.50 1.69 0.90 47493
200 73.15 34.04 14.29 6.49 1.71 0.96 81735
500 73.79 34.11 14.42 6.55 1.69 0.95 161742
1000 73.28 33.84 14.30 6.49 1.71 0.96 269774

In Table II, the average number of characters are within
range of 73 ± 0.5 for all values of w. In addition, the dictionary
size gets larger with more writing samples. Similar to the
varying number of authors, an increase in writing samples
results in a larger dictionary size.

TABLE II
DATASET STATISTICS: VARYING NUMBER OF WRITING SAMPLES

w
Characters Words Sentences

|D|
µ σ µ σ µ σ

50 73.26 34.22 14.17 6.45 1.66 0.94 10857.50
100 73.04 34.20 14.15 6.45 1.65 0.92 18093.50
200 73.04 34.16 14.15 6.44 1.65 0.93 29941.50
500 72.87 34.11 14.12 6.43 1.65 0.92 56974.60

Our experimental settings are as follows.

A. Experiment I: Varying Number of Authors

We explored how our proposed architecture performs with
an increasing number of authors. We performed a set of
performance evaluations with a different number of authors
while keeping the number of writing samples constant. The
number of writing samples per author (w) was 200. The
number of authors (a) was used in experiments was 100, 200,
500, and 1,000. In this experiment, we used the same sampling
used in [9]. As expected, the reproduced results in this paper
were similar to the reported results in [25] and [9]. We used
10-fold cross-validation on the experiments for each author
group. Hence, we evaluated 40 train-test splits in total.

B. Experiment II: Varying Number of Writing Samples

In this experiment, we investigated the impact of a differ-
ent number of writing samples for author identification. We
performed a set of performance evaluations with a varying
number of writing samples per author where the number

of authors was held to 50. The number of writing samples
per author used in experiments was 50, 100, 200, and 500.
We sampled 10 different disjoint sets of groups for each
writing sample size. We used 10-fold cross-validation on the
experiments for each author group. Hence, we evaluated 400
experiments in total.

V. RESULTS

We compare our proposed method with the following base-
lines. The information about the algorithms that were used in
the experiments can be found in the following list:

• K-Signatures [9]: Uses the features that include character
and word N-grams. The features used by a single author
at least K% of the documents are used. Also, a method
called Flexible Patterns was utilized. Patterns in this
method can match partially and get a score based on the
closeness. Combination of K-Signatures and Flexible Pat-
terns techniques shown better results in the paper. Hence,
reported results are a combination of the techniques.

• LSTMChar2: Long Term Short Term Memory (LSTM)
networks widely used and known for the sequence to
sequence tasks. There were also applications for Author
Identification. We used character bigrams as an input to
the network based on our preliminary findings on our
development set.

• Rocha et al. [3]: Character 4-grams, word 1-5 n-grams,
and POS 1-5 n-grams are extracted from the writing
samples. Hapax legomena, the features are only seen
once in the dataset, are removed to reduce the noise.
Then, the extracted features are fed to PMSVM for the
classification.

• Theóphilo et al. [4]: CNN architecture that uses character
4-grams as input. The layers used in the architecture were
dynamic k-max-pooling [37] to capture the most impor-
tant features in each layer and uses a technique called
folding [37] that applies element-wise sum operation for
every two rows. The same hyper-parameters that were
used as in Theóphilo et al. [4]. The only difference in
terms of hyper-parameters was the number of epochs. The
number of epochs increased to 100 epochs instead of 10
epochs. This change was necessary for fairness since the
algorithms compared against allowed to go as high as 100
epochs. The best performing model in the validation set
was selected and evaluated on the test set.

• CNNCharN [25]: All character N-grams are randomly
initialized and then updated in the training. The other
parameters of the networks like filter weights are also up-
dated with backpropagation. In this paper, we implement
both CNNChar1 and CNNChar2 methods to compare with
our proposed method.

• CNNW2V [26]: Pre-trained vectors in CNNW2V Static are
updated during the training. The pre-trained embeddings
are trained on the Twitter dataset.

• CNNFastText: All words are initialized with a pre-trained
word vector from FastText. The pre-trained embeddings
are trained on the Twitter dataset.



• CNNWC [10]: Word embeddings initialized with pre-
trained FastText embeddings and character bigrams are
randomly initialized. Convolutional filters are shared with
the embeddings. The embeddings and network parameters
updated with backpropagation.

A. Results of Experiment I: Varying Number of Authors

Table III shows the results of approaches discussed in
Section IV with varying number of authors. In Table III, the
first column lists the algorithm used in the experiment, where
the baseline methods are listed above the double lines and our
proposed method is listed below the double lines. The rest
of the columns list the accuracies of the algorithms with 100,
200, 500, and 1000 authors, respectively. The number in green
marks the highest accuracy in each column.

The accuracies of the algorithms decrease when there is
an increase in the number of authors for all algorithms.
CNNWC was the best performer among the baseline meth-
ods. CNNFastText outperformed the other baseline methods
without using character-level information. CNNFastText was
followed by CNNChar2 which uses Character Bigrams.

The proposed method, AARef, was the best performer for
all authors sets in Experiment I. The accuracies of the AARef
algorithms with 100, 200, 500, and 1000 authors are 57.18%,
55.31%, 47.99%, 42.83%, respectively. On average, AARef
performed better than the state-of-the-art results with 100, 200,
500, and 1000 authors.

TABLE III
PERFORMANCES OF THE ALGORITHMS WITH VARYING NUMBER OF

AUTHORS

Algorithms
Authors

100 200 500 1000

CNNChar1 [25] 49.24% 47.68% 41.37% 35.60%
CNNChar2 [25] 49.96% 48.84% 42.92% 37.55%
CNNW2V 47.21% 45.52% 39.85% 34.73%
CNNFastText 51.83% 50.25% 44.18% 38.74%
CNNWC [10] 55.20% 53.14% 46.90% 41.28%
Rocha et al. [3] 43.99% 42.32% 36.63% 31.61%
Theóphilo et al. [4] 30.99% 31.44% 29.88% 27.76%
K-Signatures [9] 42.50% 41.10% 35.50% 30.30%
LSTMChar2 33.80% 33.50% 29.80% 24.80%

AARef 57.18% 55.31% 47.99% 42.83%

B. Results of Experiment II: Varying Number of Writing Sam-
ples

Table IV shows the results of approaches discussed in
Section IV with varying number of writing samples per author.
In Table IV, the first column lists the algorithm used in the
experiment, where the baseline methods are listed above the
double lines and our proposed method is listed below the
double lines. The rest of the columns list the accuracies of
the algorithms with 50, 100, 200, and 500 writing samples per

author, respectively. The number in green marks the highest
accuracy in each column.

One can see that the accuracies increase as the num-
ber of writing samples increases for all the methods listed.
Among the baseline methods, CNNWC performed better than
others. The performances of CNNFastText, CNNChar1, and
CNNChar2 was very close. One can see that CNNFastText

scaled better since CNNFastText was clearly better than
CNNChar1, and CNNChar2.

The proposed method, AARef, was the best performer
for all writing samples per author in Experiment II. The
accuracies of the AARef algorithms with 50, 100, 200, and
500 writing samples per author are 56.10%, 63.51%, 70.05%,
76.04%, respectively. On average, AARef performed better
than the state-of-the-art results with 50, 100, 200, and 500
writing samples per author. It is should be noted that, AARef
had smaller footprint compared to Rocha et al. [3], where
frequency of each character 4-grams, word 1-5 n-grams, and
POS 1-5 n-grams were used as inputs.

TABLE IV
PERFORMANCES OF THE ALGORITHMS WITH VARYING NUMBER OF

WRITING SAMPLES

Algorithms
Writing Samples

50 100 200 500

CNNChar1 [25] 51.40% 58.20% 64.07% 70.30%
CNNChar2 [25] 51.56% 58.25% 63.59% 69.80%
CNNW2V 49.14% 56.68% 62.96% 69.70%
CNNFastText 51.46% 59.14% 65.61% 72.46%
CNNWC [10] 54.36% 62.17% 68.34% 74.50%
Rocha et al. [3] 42.88% 49.90% 57.43% 66.71%
Theóphilo et al. [4] 30.20% 38.32% 45.53% 56.00%

AARef 56.10% 63.51% 70.05% 76.04%

VI. CONCLUSION AND FUTURE WORK

We proposed a Multi-Channel CNN approach that take
advantage of multi branch refinement convolution blocks. The
architecture of proposed block includes different convolution
branches with identity mapping. The skipped connection in
the identity mapping block helps the model capture salient
information and passes the information on to the rest of
network. We compared the performance of AARef with state-
of-the-art CNNs that uses a Multi-Channel architecture. The
results of the experiments show that the AARef performs better
than the state-of-the-art CNNs on the Twitter dataset.

In the future, it would be interesting to see how network
will perform with the conceptualized embeddings.
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